秀才文库网为您提供优质参考范文! 工作总结 工作计划 述职报告 心得体会
当前位置:首页 > 范文大全 > 公文范文 >

热电偶定标实验报告(全文)

时间:2022-06-16 20:06:01 来源:网友投稿

下面是小编为大家整理的热电偶定标实验报告(全文),供大家参考。希望对大家写作有帮助!

热电偶定标实验报告(全文)

热电偶的定标实验报告5篇

第一篇: 热电偶的定标实验报告

检测技术实验报告

院(系):
自动化 专业:
自动化

姓名:
学号:

同组人员:

评定成绩:
评阅教师:

实验四 K热电偶测温性能实验一、实验目的:了解热电偶测温原理及方法和应用。二、基本原理:热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;
未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;
温差为0时,热电偶的输出电动势为0;
因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;
可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。三、需用器件与单元:主机箱、温度源、Pt100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。四、实验步骤:

热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;
E(镍铬-康铜), 偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。

从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。

热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。热电偶测温时要对参考端(冷端)进行修正(补偿),计算公式:E(t,t0)=E(t,t0')+E(t0', t0)

式中:E(t,t0)—热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值;

E(t,t0')—热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值;

E(t0',t0)—热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。

例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温)t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益k=10)32.7mv,则E(t,t0')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢?

解:由附录K热电偶分度表查得:

E(t0',t0)=E(20,0)=0.798mV

已测得 E(t,t0')=32.7mV/10=3.27mV

故 E(t,t0)=E(t,t0')+E(t0', t0)= 3.27mV+0.798mV=4.068mV

热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100℃。

1、在主机箱总电源、调节仪电源、温度源电源关闭的状态下,按图1示意图接线。

图1 K热电偶温度特性实验接线示意

2、调节温度传感器实验模板放大器的增益K=30倍:在图1中温度传感器实验模板上的放大器的二输入端引线暂时不要接入。拿出应变传感器实验模板(实验一的模板),将应变传感器实验模板上的放大器输入端相连(短接),应变传感器实验模板上的±15V电源插孔与主机箱的±15V电源相应连接,合上主机箱电源开关(调节仪电源和温度源电源关闭)后调节应变传感器实验模板上的电位器R W4(调零电位器)使放大器输出一个较大的mV信号,如20mV(可用电压表2V档测量),再将这个20mV信号(Vi)输给图30A中温度传感器实验模板的放大器输入端(单端输入:上端接mV,下端接⊥);
用电压表(2V档)监测温度传感器实验模板中的Vo1,调节温度传感器实验模板中的RW2增益电位器,使放大器输出Vo1=60OmV,则放大器的增益K= Vo1/Vi=600/20=30倍。注意:增益K调节好后,千万不要触碰RW2增益电位器。

3、关闭主机箱电源,拆去应变传感器实验模板,恢复图30A接线。

4、测量热电偶冷端温度并进行冷端温度补偿:在温度源电源开关关闭(O为关,-为开)状态下,合上主机箱和调节仪电源开关并将调节仪控制方式(控制对象)开关按到内(温度)位置,记录调节仪PV窗的显示值(实验时的室温)即为热电偶冷端温度t0'(工作时的参考端温度);
根据热电偶冷端温度t0'查附录K热电偶分度表得到E(t0',t0),再根据E(t0',t0) 进行冷端温度补偿-----调节温度传感器实验模板中的RW3(电平移动)使Vo2= E(t0',t0)*K= E(t0',t0)*30(用电压表2V档监测温度传感器实验模板中的Vo2)。

5、将主机箱上的转速调节旋钮(2—24V)顺时针转到底(24V),合上温度源电源开关,在室温基础上,可按Δt=5℃增加温度并且小于160℃范围内设定温度源温度值(设定方法参阅实验二十七,重复6、7、8、9步骤),待温度源温度动态平衡时读取主机箱电压表的显示值并填入表1。

表1 K热电偶热电势(经过放大器放大后的热电势)与温度数据

6、根据表1数据画出实验曲线并计算非线性误差。实验结束,关闭所有电源。

注:实验数据V(mv)/k(增益)= E(t,t0)。

第二篇: 热电偶的定标实验报告

实验4—8 热电偶定标实验

在现代工业自动控制系统中,温度控制是经常遇到的工作,对温度的自动控制有许多种方法。在实际应用中,热电偶的重要应用是测量温度,它是把非电学量(温度)转化成电学量(电动势)来测量的一个实际例子。用热电偶测温具有许多优点,如测温范围宽(-200~2000℃)、测量灵敏度和准确度较高、结构简单不易损坏等。此外由于热电偶的热容量小,受热点也可做得很小,因而对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。热电偶在冶金、化工生产中用于高、低温的测量;
在科学研究、自动控制过程中作为温度传感器,具有非常广泛的应用。在大学物理实验中,热电偶温度计的定标是一个传统实验,该实验要求学生找出热电偶的温差电动势与冷热端温差之间的关系,并给出温差电动势与冷热端温差之间的关系曲线,求出经验方程,从而完成其定标工作,使同学们了解热电偶测温度的基本原理。

【实验目的】

1. 加深对温差电现象的理解。

2. 了解热电偶测温的基本原理和方法。

3. 了解热电偶定标基本方法。

【实验原理】

1. 温差电效应

温度是表征热力学系统冷热程度的物理量,温度的数值表示法叫温标。常用的温标有摄氏温标、华氏温标和热力学温标等。

温度会使物质的某些物理性质发生改变。一般来讲,任一物质的任一物理性质只要它随温度的改变而发生单调的、显著的变化,都可用它来标志温度,也即制作温度计。常用的温度计有水银温度计、酒精温度计和热电偶温度计等。

在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶得温差电动势与温度的关系。


图4-8-1 闭合电路

如果用A、B两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图4-8-1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。

2. 热电偶

两种不同金属串接在一起,其两端可以和仪器相连进行测温(图4-8-2)的元件称为温差电偶,也叫热电偶。温差电偶的温差电动势与二接头温度之间的关系比较复杂,


图4-8-2 热电偶测温

但是在较小温差范围内可以近似认为温差电动势与温度差成正比,即

(4-8-1)

式中为热端的温度,为冷端的温度,称为温差系数(或称温差电偶常量),单位为 V℃,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即

(4-8-2)

式中k为玻耳兹曼常量,为电子电量,和为两种金属单位体积内的自由电子数目。

如图4-8-3所示,温差电偶与测量仪器有两种连接方式:(a)金属B的两端分别和金属A焊接,测量仪器M插入A线中间;

(b)A、B的一端焊接,另一端和测量仪器连接。

在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A、B两种金属之间插入任何一种金属C,只要维持它和A、B的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A、B两种金属组成的温差电偶中的温差电动势一样。


图4-8-3 温差电偶与测量仪器有两种连接方式

温差电偶的测温范围可以从4.2K(-268.95℃)的深低温直至2800℃的高温。必须注意,不同的温差电偶所能测量的温度范围各不相同。

3.热电偶的定标

热电偶定标的方法有两种:

1)比较法

即用被校热电偶与一标准组成的热偶去测同一温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶所测的热电势所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度、进行逐点校准,就可得到被校热电偶的一条校准曲线。

2)固定点法

这是利用几种合适的纯物质在一定气压下(一般是标准大气压),将这些纯物质的沸点和熔点温度作为已知温度,测出热电偶在这些温度下的对应的电动势,从而得到热电势,从而得到℃热电势-温度关系曲线,这就是所求的校准曲线。

本实验采用固定点法对热电偶进行定标。为了能测量热电动势E中直接得出待测温度T值,必须对所用热电偶测定其热电动势E与温度T的关系,这就是热电偶温度的定标。本实验是做“铜—康铜”热电偶温度计的定标。在测定E~T关系时,采用摄氏温度规定的两个固定点,即溶冰点(0℃)和沸水点(100℃),再在0~100℃之间取若干温度点,给出0~100℃之间的E~T曲线。

热电偶具有结构简单、小巧、热容量小、测温范围宽等优点,因此被广泛应用于生产和科学研究的测温和温度的自动控制中。

实用温标定义的固定点见表4-8-1,常用热电偶特性见表4-8-2。

表4-8-1 国际实用温标(TPTS-68)定义的固定点

平衡状态

国际实用温标指定值

(K)

(0C)

平衡氢二相点

13.81

-259.34

氧三相点

54.361

-218.789

氧冷凝点

90.188

-188.962

水三相点

273.16

0.01

水沸点

373.15

100

锡凝固点

505.1181

213.9681

锌凝固点

692.73

419.58

银凝固点

1235.08

961.93

金凝固点

1337.58

1064.43

表4-8-2 常用热电偶特性

热电偶

常用温度范围(0C)

温差电动势近似值(mv/1000C)

铜-康铜

-200~+300

4.3

铁-康铜

-200~+800

5.3

铬-铝

-200~+1100

4.1

铂-10%铑

-180~+1600

0.95

铂,40%铑-铂,20%铑

+200~+1800

0.4

【实验仪器】

“铜—康铜”热电偶,保温杯,WHT-3导热系数测试仪(可直接用数字电压表或UJ—36直流电位差计)。

1.图4-8-4是实验装置示意图


图4-8-4 实验装置示意图

“铜—康铜”热电偶的一个接点(冷端)放在盛有冰水混合物的杜瓦瓶中,使该接点维持在恒定的0℃。另一接点(热端)放在A盘小孔中。升温由它的加热器来实现,当手动加热时,将控制方式置“手动”;
当自动加热时,将控制方式置“自动”,由PID设定温度自动控制温度。

2.PID控温

PID智能温度控制器是一种高性能、高可靠性的智能型调节仪表,广泛应用于机械、化工、陶瓷、轻工、冶金、石化、热处理等行业的温度、流量、压力、液位等的自动控制系统。

3.“铜—康铜”热电偶温度为100℃时,其温差电动势约为4.0mV,若精度要求不高,可直接用20mV数字电压表代替UJ—36型携带式直流电位差计。

4.UJ—36型携带式直流电位差计

电位差计的工作原理是用滑线电阻上产生的已知压降来补偿热电偶产生的电动势,测量精度较高,仪器使用方法如下:

1)被测电压(或电动势)接到“未知”接线柱上。

2)倍率开关旋到“×0.2”的位置上,这时仪器内部电源已接通,稍待片刻即可调节“调零”旋钮,使检流计指针指零。

3)将开关“K”扳向标准,调节多圈变阻器(Rp),使检流计指零。

4)将开关“K”扳向“未知”,调节滑线读数盘(0~10mV)和步进读数盘,使检流计指零。未知电动势按下式计算:

E=(步进盘读数+滑线盘读数)×0.2 (4-8-3)

5)每次测量前要核对工作电流,即重复2)和3)中的指零调节。为保护检流计,扳动开关“K”时,只要看出指针偏转方向,就立刻使“K”返回中间位置。进行指零调节时,不可将“K”扳住不放。

【实验内容与步骤】

1.热电偶的冷端固定于0℃,WHT-3型导热系数测试仪采用电子补偿,使冷端始终保持在0℃。

2.测定热电偶当热端处于以下温度值时的热电势

1)水的冰点,即0℃,将热电偶的热端放在冰水瓶里。

2)常温下水的温度,将热电偶的热端放在盛水烧杯里。

3)50.0℃左右,将热电偶的热端放在A盘小孔里,然后PID控温设定在50.0℃,将控制方式置“自动”,加热器将会把铜盘自动加热到50.0℃。

4)PID控温分别设定在55.0℃、60.0℃、65.0℃、70.0℃、75.0℃、80.0℃、85.0℃,(由于PID显示温度已经过校准可代替标准水银温度计),测出相应的热电势。

3.如果精度要求不高,也可以用电位差计测热电势,WHT-3导热系数测试仪设有外接电位差计插孔,位于“特性测量与分析”的位置。将外接线的一端插入外接电位差计插孔中,另一端的两个接线叉对应接到UJ—36电位差计的“未知”正、负接线柱上。当使用外接电位差计进行测量时,热电偶的冷端应放在冰水瓶中,此时,应检查冰水瓶内的水面是否有冰块。按电位差计使用方法测量热电势E。当T=T0时,E应为零。若仪器指示不为零或超过最小分度一格,应对该仪器进行校准;
小于一格时,可记下这个读数,作为零点订正值。

【实验数据处理及分析】

1.记录热电偶定标数据

序号

1

2

3

4

5

6

7

8

9

10

T(℃)

E(mV)

序号

11

12

13

14

15

16

17

18

19

20

T(℃)

E(mV)

2.作出热电偶的标定曲线

3.求出“铜—康铜”热电偶的温差电系数

在本实验温度范围内,E~T关系近似为线性,所以,在定标曲线上可以给出线性化后的平均直线,从而求得。在直线上取两点和 (不要取原来测量的数据点,并且两点间尽可能相距远一些),求斜率

(4-8-4)

即为所求的。

【思考与创新】

1. 保温杯内的冰水混合物的温度是否处处为0℃?

2. 热电偶温度计有什么特点?

3. 对该实验提出改进意见,或设计一套新的实验方案。

【参考文献】

[1] 程守珠,江之永. 普通物理学第二册[M]. 北京:高等教育出版社,1982. 108-110

[2] 袁玉辉,曹家刚,董庶民. 大学物理实验[M]. 成都:西南交通大学出版社,1992. 148-151

第三篇: 热电偶的定标实验报告

如何区分热电偶和热电阻?热电阻与热电偶的区别

首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。

热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;
温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。

但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。

其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

第四篇: 热电偶的定标实验报告

实验一 热电偶的热电势—温度曲线测定

一、实验目的

通过本实验掌握热电偶测温的基本原理、热电偶的基本构造及直流电位差计的使用方法。

二、实验原理及方法

1.原理:热电偶由两种不同材质的金属材料焊接而成。焊接端称为测量端,测量时将它置于测温场所感受被测温度,非焊接端要求温度恒定,称为参考端,又称自由端或冷端。两种不同材质的导体连接在一起,构成一个闭合回路,当两个接点的温度不同时,在回路中就会产生热电势。对确定的热电偶材料,如果冷端温度TO固定,其热电势就只与测量端温度T成单值函数关系。

2.方法:本实验采用镍铬-康铜热电偶。将热电偶的测量端插入温控干燥箱中加热,同时温控干燥箱中再插入一只温度计,用来确定温度。把热电偶的冷端点按正负极与UJ33a型直流电位差计的正负接线端子相连接,用于测量热电偶回路热电势。该型电位差计根据补偿法原理制成,可以修正冷端温度波动引入的误差。将数次加热温控干燥箱后测量的温度和对应的热电势数值记录在表格中,并绘制温度-热电势特性曲线。

实验原理图

三、实验设备

UJ33a型直流电位差计、镍铬-康铜热电偶、玻璃管式温度计、202—O型温控干燥箱

四、实验步骤

1.校准UJ33a型直流电位差计:将倍率开关K1旋到所需位置,K3旋到测量,旋转调零电位器,使检流计指针指零。将K2扳向“标准”,旋转工作电流调节旋钮,使指针指零。

2.打开温控干燥箱,设定预热到150℃,将玻璃管式温度计插入温控干燥箱。

3.将热电偶用导线与电位差计连接,组成测量电路,将热电偶的测温探头插入温控干燥箱内。

4.将K2扳向未知,调节读数盘,使指针返零,则被测值为读数示值之和与倍率的乘积,记录其数值。

5.随温控干燥箱内温度升高,采用相同的方法测量不同温度点对应的热电势,并记录数据。

6.实验完毕,关闭温控干燥箱,整理好仪器。

五、思考

1.热电偶回路中产生的总热电势是由哪两种电势组成的?这两种电势都是如何产生的?

2.热电偶回路中产生的总热电势和哪些因素有关?

六、实验报告

1.数据记录

2.绘制温度-热电势曲线

3.实验误差分析

第五篇: 热电偶的定标实验报告

k型热电偶

(K型热电偶)镍铬-镍硅热电偶
镍铬-镍硅热电偶(K型热电偶)是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分为:Ni:Si=97:3,其使用温度为-200~1300℃。
K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。广泛为用户所采用。
K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。S型热电偶)铂铑10-铂热电偶
铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
(R型热电偶)铂铑13-铂热电偶
铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。1967年至1971年间,英国NPL,美国NBS和加拿大NRC三大研究机构进行了一项合作研究,其结果表明,R型热电偶的稳定性和复现性比S型热电偶均好,我国目前尚未开展这方面的研究。R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。(B型热电偶)铂铑30-铂铑6热电偶
铂铑30-铂铑6热电偶(B型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(BN)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800℃。
B型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长,

测温上限高等优点。适用于氧化性和惰性气氛中,也可短期用于真空中,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。B型热电偶一个明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。
B型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。(N型热电偶)镍铬硅-镍硅热电偶
镍铬硅-镍硅热电偶(N型热电偶)为廉金属热电偶,是一种最新国际标准化的热电偶,是在70年代初由澳大利亚国防部实验室研制成功的它克服了K型热电偶的两个重要缺点:K型热电偶在300~500℃间由于镍铬合金的晶格短程有序而引起的热电动势不稳定;
在800℃左右由于镍铬合金发生择优氧化引起的热电动势不稳定。正极(NP)的名义化学成分为:Ni:Cr:Si=84.4:14.2:1.4,负极(NN)的名义化学成分为:Ni:Si:Mg=95.5:4.4:0.1,其使用温度为-200~1300℃。
N型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,抗氧化性能强,价格便宜,不受短程有序化影响等优点,其综合性能优于K型热电偶,是一种很有发展前途的热电偶.
N型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。
(E型热电偶)镍铬-铜镍热电偶
镍铬-铜镍热电偶(E型热电偶)又称镍铬-康铜热电偶,也是一种廉金属的热电偶,正极(EP)为:镍铬10合金,化学成分与KP相同,负极(EN)为铜镍合金,名义化学成分为:55%的铜,45%的镍以及少量的锰,钴,铁等元素。该热电偶的使用温度为-200~900℃。
E型热电偶热电动势之大,灵敏度之高属所有热电偶之最,宜制成热电堆,测量微小的温度变化。对于高湿度气氛的腐蚀不甚灵敏,宜用于湿度较高的环境。E热电偶还具有稳定性好,抗氧化性能优于铜-康铜,铁-康铜热电偶,价格便宜等优点,能用于氧化性和惰性气氛中,广泛为用户采用。E型热电偶不能直接在高温下用于硫,还原性气氛中,热电势均匀性较差。(J型热电偶)铁-铜镍热电偶
铁-铜镍热电偶(J型热电偶)又称铁-康铜热电偶,也是一种价格低廉的廉金属的热电偶。它的正极(JP)的名义化学成分为纯铁,负极(JN)为铜镍合金,常被含糊地称之为康铜,其名义化学成分为:55%的铜和45%的镍以及少量却十分重要的锰,钴,铁等元素,尽管它叫康铜,但不同于镍铬-康铜和铜-康铜的康铜,故不能用EN和TN来替换。铁-康铜热电偶的覆盖测量温区为-200~1200℃,但通常使用的温度范围为0~750℃
J型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,广为用户所采用。
J型热电偶可用于真空,氧化,还原和惰性气氛中,但正极铁在高温下氧化较快,故使用温度受到限制,也不能直接无保护地在高温下用于硫化气氛中。(T型热电偶)铜-铜镍热电偶
铜-铜镍热电偶(T型热电偶)又称铜-康铜热电偶,也是一种最佳的测量低温的廉金属的热电偶。它的正极(TP)是纯铜,负极(TN)为铜镍合金,常之为康铜,它与镍铬-康铜的康铜EN通用,与铁-康铜的康铜JN不能通用,尽管它们都叫康铜,铜-铜镍热电偶的盖测量温区为-200~350℃。
T型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,特别在-200~0℃温区内使用,稳定性更好,年稳定性可小于±3μV,经低温检定可作为二等标准进行低温量值传递。T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制。



推荐访问:定标 热电偶 实验 热电偶定标实验报告 热电偶的定标实验报告 热电偶的定标实验报告误差分析